Bounded realization of l-groups over global fields
نویسندگان
چکیده
منابع مشابه
BOUNDED REALIZATION OF l-GROUPS OVER GLOBAL FIELDS
We use the method of Scholz and Reichardt and a transfer principle from finite fields to pseudo finite fields in order to prove the following result. Theorem: Let G be a group of order l, where l is a prime number. Let K0 be either a finite field with |K0| > l or a pseudo finite field. Suppose that l 6= char(K0) and that K0 does not contain the root of unity ζl of order l. Let K = K0(t), with t...
متن کاملCycle groups of curves over global fields
The purpose of this investigation is to study certain low-dimensional cycle groups of smooth projective curves over global fields of positive characteristic, that is, fields which are finitely generated of transcendence degree one over a finite field. After a brief introduction, we overview some established results in this area and extend them appropriately. Throughout this paper, an algebraic ...
متن کاملFiniteness properties of soluble arithmetic groups over global function fields
Let G be a Chevalley group scheme and B ≤ G a Borel subgroup scheme, both defined over Z. Let K be a global function field, S be a finite non-empty set of places over K , and OS be the corresponding S–arithmetic ring. Then, the S– arithmetic group B(OS) is of type F |S|−1 but not of type FP |S| . Moreover one can derive lower and upper bounds for the geometric invariants Σ(B(OS)). These are sha...
متن کاملReductive Groups over Fields
These are lecture notes that Tony Feng live-TEXed from a course given by Brian Conrad at Stanford in“winter” 2015, which Feng and Conrad edited afterwards. Two substitute lectures were delivered (by Akshay Venkatesh and Zhiwei Yun) when Conrad was out of town. This is a sequel to a previous course on the general structure of linear algebraic groups; some loose ends from that course (e.g., Cheva...
متن کاملGalois Groups over Nonrigid Fields
Let F be a field with charF 6= 2. We show that there are two groups of order 32, respectively 64, such that a field F with char F 6= 2 is nonrigid if and only if at least one of the two groups is realizable as a Galois group over F . The realizability of those groups turns out to be equivalent to the realizability of certain quotients (of order 16, respectively 32). Using known results on conne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1998
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000025046